RSA算法原理(2)
本文作者:一起剥坚果
作者: 阮一峰 上一次,我介绍了一些数论知识。 有了这些知识,我们就可以看懂RSA算法。这是目前地球上最重要的加密算法。 六、密钥生成的步骤 我们通过一个例子,来理解RSA算法。假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢? 第一步,随机选择两个不相等的质数p和q。 爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。) 第二步,计算p和q的乘积n。 爱丽丝就把61和53相乘。 n = 61×53 = 3233 n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。 第三步,计算n的欧拉函数?(n)。 根据公式: ?(n) = (p-1)(q-1) 爱丽丝算出?(3233)等于60×52,即3120。 第四步,随机选择一个整数e,条件是1< e < ?(n),且e与?(n) 互质。 爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。) 第五步,计算e对于?(n)的模反元素d。 所谓"模反元素"就是指有一个整数d,可以使得ed被?(n)除的余数为1。 ed ≡ 1 (mod ?(n)) 这个式子等价于 ed - 1 = k?(n) 于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。 ex + ?(n)y = 1 已知 e=17, ?(n)=3120, 17x + 3120y = 1 这个方程可以用"扩展欧几里得算法"求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。 至此所有计算完成。 第六步,将n和e封装成公钥,n和d封装成私钥。 在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。 实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。 七、RSA算法的可靠性 回顾上面的密钥生成步骤,一共出现六个数字: ?(n) 这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。 那么,有无可能在已知n和e的情况下,推导出d? (1)ed≡1 (mod ?(n))。只有知道e和?(n),才能算出d。 (2)?(n)=(p-1)(q-1)。只有知道p和q,才能算出?(n)。 (3)n=pq。只有将n因数分解,才能算出p和q。 结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。 可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道: "对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。 假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。 只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。" 举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。 12301866845301177551304949 58384962720772853569595334 79219732245215172640050726 36575187452021997864693899 56474942774063845925192557 32630345373154826850791702 61221429134616704292143116 02221240479274737794080665 351419597459856902143413 它等于这样两个质数的乘积: 33478071698956898786044169 84821269081770479498371376 85689124313889828837938780 02287614711652531743087737 814467999489 × 36746043666799590428244633 79962795263227915816434308 76426760322838157396665112 79233373417143396810270092 798736308917 事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。 八、加密和解密 有了公钥和密钥,就能进行加密和解密了。 (1)加密要用公钥 (n,e) 假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。 所谓"加密",就是算出下式的c: me ≡ c (mod n) 爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式: 6517 ≡ 2790 (mod 3233) 于是,c等于2790,鲍勃就把2790发给了爱丽丝。 (2)解密要用私钥(n,d) 爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立: cd ≡ m (mod n) 也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出 27902753 ≡ 65 (mod 3233) 因此,爱丽丝知道了鲍勃加密前的原文就是65。 至此,"加密--解密"的整个过程全部完成。 我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。 你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种"对称性加密算法"(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。 九、私钥解密的证明 最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子: 因为,根据加密规则 me ≡ c (mod n) 于是,c可以写成下面的形式: c = me - kn 将c代入要我们要证明的那个解密规则: (me - kn)d ≡ m (mod n) 它等同于求证 med ≡ m (mod n) 由于 所以 ed = h?(n)+1 将ed代入: mh?(n)+1 ≡ m (mod n) 接下来,分成两种情况证明上面这个式子。 (1)m与n互质。 根据欧拉定理,此时 m?(n) ≡ 1 (mod n) 得到 (m?(n))h × m ≡ m (mod n) 原式得到证明。 (2)m与n不是互质关系。 此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。 以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立: (kp)q-1 ≡ 1 (mod q) 进一步得到 [(kp)q-1]h(p-1) × kp ≡ kp (mod q) 即 (kp)ed ≡ kp (mod q) 将它改写成下面的等式 (kp)ed = tq + kp 这时t必然能被p整除,即 t=t'p (kp)ed = t'pq + kp 因为 m=kp,n=pq,所以 (完) 关于本文 本文授权转载自阮一峰的网络日志 原文地址:http://iphone.myzaker.com/l.php?l=522d6bac7f52e90c7b000002 该文章在 2013/9/9 21:45:21 编辑过 |
相关文章
正在查询... |